A Unique Indolo-[1,7]naphthyridine Alkaloid from Incarvillea mairei var. grandiflora (WEHRH.) GRIERSON

by Yun-Heng Shen^a), Yong-Qing Su^a)^b), Jun-Mian Tian^a), Sheng Lin^a), Hui-Liang Li^a), Jian Tang^a), and Wei-Dong Zhang*^a)^c)

^a) Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, P. R. China (phone/fax: +86-21-81871244; e-mail: wdzhangy@hotmail.com) ^b) No. 123rd Hospital of PLA, Bengbu 233015, P. R. China

^c) School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200030, P. R. China

A novel alkaloid with a unique indolo-[1,7]naphthyridine nucleus, incargranine B, was isolated from the whole plant of Incarvillea mairei var. grandiflora (WEHRH.) GRIERSON. Its structure was determined by means of spectroscopic methods.

Introduction. - Incarvillea mairei var. grandiflora (WEHRH.) GRIERSON (Bignoniaceae), mainly native to the mountains of Yunnan, Sichuan, and Qinghai provinces [1][2], is a member of the genus Incarvillea. Several structurally diverse actinidine-type monoterpenoid alkaloids with strong antinociceptive activity have been isolated from the genus Incarvillea [3-13], and attracted more attention due to their biological activities and structural complexities. We have previously reported the isolation and structural elucidation of two new alkaloids, isoincarvilline and incargranine A [14]. Further investigation of this plant led to another structurally unique decahydro-indolo-[1,7]naphthyridine alkaloid, incargranine B (1), isolated from the 80% EtOH extract of the whole plant of *I. mairei* var. grandiflora. Here, we report the isolation and structure elucidation of incargranine B (1; Fig. 1).

Results and Discussion. - The AcOEt extract (350 g) of the 80% EtOH extract of I. mairei var. grandiflora was chromatographed over silica-gel column with gradient

© 2010 Verlag Helvetica Chimica Acta AG, Zürich

CHCl₃/MeOH (100:0 \rightarrow 0:100) to afford nine fractions 1–9, and *Fraction* 9 was further purified by repeated column chromatography over silica gel and *Sephadex LH-20* (MeOH) to provide compound **1** (7 mg).

For incargranine B (1; *Fig. 1*), the molecular formula $C_{36}H_{50}N_2O_{12}$ was established by negative-ion-mode HR-ESI-MS (m/z 701.3282 ($[M-H]^-$, for C₃₆H₄₉N₂O₁₂; calc. 701.3286)), indicating 13 degrees of unsaturation. The ¹H-NMR spectrum (*Table*) of **1** exhibited the signals of one 1,4-substituted phenyl (δ (H) 6.59 (d, J = 8.4, 2 H), 7.09 (d, J = 8.4, 2 H)), one 1,3,4-substituted phenyl (δ (H) 7.03 (d, J = 7.9), 6.85 (s), 6.65 (d, J = 3.4, 2 H)) 7.9)), and two sugar moieties (two anomeric H-atom signals at $\delta(H)$ 4.31 (d, J=7.8) and 4.21 (d, J = 7.8), and a series of signals between δ (H) 3.13 and 3.90). The ¹³C-NMR spectrum of **1** showed signals for 36 C-atoms, attributed to five sp² quaternary C-atoms, 20 CH groups (7 sp², 13 sp³), and 11 sp³ CH₂ groups. Analysis of the ¹H,¹H-COSY (Fig. 2) and HSQC data together with the 1D-NMR spectra of 1 led to identification of the partial structures **a** (N(1) to C(8)), **b** (C(1') to C(6')), **c** (C(7') to C(8')), **d** (C(1'') to C(6''), **e** (C(7'') to C(8'')), **f** (C(1''') to C(6''')), and **g** (C(1''') to C(6'''))¹) (*Fig. 2*). Further analysis of the HMBC spectrum allowed attribution of the seven partial structures to five substructures: one decahydro-indole-[1,7]naphthyridine moiety, one 2-(4-substituted phenyl)ethanol moiety, one 2-(3,4-disubstituted phenyl)ethanol moiety, and two glucopyranoses ($\delta(C)$ 104.6, 75.3, 78.2, 71.8, 78.1, 63.0, and 104.6, 75.3, 78.2, 71.8, 78.1, 62.9, resp.). Of 13 degrees of unsaturation, two were assigned to the two glucoses, two to the decahydro-1,7-naphthyridine moiety, and eight to the two 2phenylethanols, thus 1 was inferred to possess another ring. The result suggested the presence of a fused pentacyclic ring system for 1 between decahydro-1,7-naphthyridine moiety and 2-(3,4-disubstituted phenyl)ethanol moiety. The connections of C(8) to C(3'') and N(1) to C(4'') was further confirmed by the HMBC correlations H-C(8)/C(2''), C(3''), and C(4''). The HMBC correlation H-C(8)/C(4') indicated that 2-(4substituted phenyl)ethanol moiety was located at N(7). In the HMBC spectrum of 1, the long correlations H-C(1''')/C(8') and H-C(1'''')/C(8'') established the connections of two glucose moieties with two 2-phenylethanol moieties, respectively (Fig. 2). Thus, the gross planar structure of incargranine B was assigned as shown in Figs. 1 and 2.

Fig. 2. Selected HMBC $(H \rightarrow C)$ and ${}^{1}H, {}^{1}H-COSY$ (—) correlations of 1

1) Arbitrary atom numbering as indicated in Fig. 1. For systematic names, see Exper. Part.

	$\delta(\mathrm{H})$	$\delta(C)$		$\delta(\mathrm{H})$	$\delta(C)$
CH ₂ (2)	$3.64 - 3.65 (m, H_a),$	49.3	C(1")		130.3
	$2.79 - 2.81 (m, H_b)$		H - C(2'')	6.85(s)	129.1
$CH_{2}(3)$	2.05 - 2.10 (m)	23.9	C(3")		130.3
CH ₂ (4)	$2.21 - 2.25$ (overlap, H_a),	33.3	C(4'')		147.2
	1.70 - 1.75 (overlap, H _b)		H-C(5")	6.65 (d, J = 7.9)	113.7
H-C(4a)	2.71-2.75 (overlap)	49.5	H-C(6")	7.03 (d, J = 7.9)	129.0
CH ₂ (5)	$2.21 - 2.25$ (overlap, H_a),	31.7	CH ₂ (7")	2.71-2.75 (overlap)	37.0
	1.70 - 1.75 (overlap, H _b)		CH ₂ (8")	$3.86 - 3.88 (m, H_a),$	72.5
CH ₂ (6)	$3.55 - 3.58$ (overlap, H_a),	51.0		3.55-3.58 (overlap, H _b)	
	$3.25 - 3.26 (m, H_b)$		H - C(1''')	4.31 (d, J = 7.8)	104.6
H-C(8)	4.27 (d, J = 9.0)	61.7	H-C(2"")	3.13(t, J = 7.8)	75.3
H-C(8a)	2.34–2.37 (<i>m</i>)	66.7	H-C(3"")	3.19-3.22 (<i>m</i>)	78.2
C(1')		128.5	H - C(4''')	3.27-3.29 (overlap)	71.8
H-C(2')	7.09 (d, J = 8.4)	130.8	H-C(5"")	3.31-3.34 (overlap)	78.1
H - C(3')	6.59 (d, J = 8.4)	114.8	CH ₂ (6''')	$3.90 (dd, J = 13.2, 9.6, H_a),$	63.0
C(4′)		149.7		$3.62 (dd, J = 13.2, 2.4, H_b)$	
H - C(5')	6.59(d, J = 8.4)	114.8	H - C(1'''')	4.21 (d, J = 7.8)	104.6
H-C(6')	7.09 (d, J = 8.4)	130.8	H-C(2"")	3.23 (t, J = 7.8, 8.5)	75.3
CH ₂ (7')	2.83 - 2.87 (m)	36.6	H-C(3"")	3.27-3.29 (overlap)	78.2
CH ₂ (8')	$4.04 - 4.07 (m, H_a),$	72.5	H-C(4"")	3.27-3.29 (overlap)	71.8
	$3.69 - 3.73 (m, H_b)$		H-C(5"")	3.31-3.34 (overlap)	78.1
			CH ₂ (6'''')	$3.72 (dd, J = 13.2, 9.6, H_a),$	62.9
				$3.62 (dd, J = 13.2, 2.4, H_b)$	

Table. ¹*H*- (600 MHz) and ¹³*C*-*NMR* (150 MHz) *Data of* **1** (in CD₃OD, *J* in Hz, δ in ppm). Arbitrary C-atom numbering.

The relative configuration of **1** was deduced from the ROESY spectrum as shown in the computer-generated three-dimensional drawing (*Fig. 3*). In the ROESY spectrum, no correlations H-C(8)/H-C(8a) and H-C(4a)/H-C(8a) were observed, while the presence of the strong correlation H-C(8)/H-C(4a) suggested that H-C(4a),

Fig. 3. Key NOESY correlations of 1

H-C(8), and H-C(8a) were α -, α -, and β -oriented, respectively. Therefore, the structure of **1** was identified, and named incargranine B.

The structure of **1** represents a new type of alkaloid, namely decahydro-indolo-[1,7]naphthyridine alkaloid.

Experimental Part

General. Column chromatography (CC) was performed on silica gel (200–300 mesh), *H60* (*Qingdao Marine Chemical Plant*, Qingdao, P. R. China), and *Sephadex LH-20* (*Pharmacia Fine Chemicals*, Piscataway, NJ, USA). Optical rotation: *Perkin-Elmer 341* digital polarimeter; at 589 nm. ¹H-, ¹³C-, and 2D-NMR Spectra: *Bruker DRX-500* spectrometer; in CDCl₃; δ in ppm rel. to Me₄Si, *J* in Hz. MS: *Agilent-1100-LC/MSD-Trap* (ESI-MS) and *Agilent Micro-Q-Tof* (HR-ESI-MS) spectrometer; in *m/z*.

Plant Material. The whole plants of *I. mairei* var. *grandiflora* were collected in Zhongdian County, Yunnan Province, in late October 2006, and authenticated by Prof. *Li-Shan Xie* of Kunming Institute of Botany, Chinese Academy of Sciences. A voucher specimen (No. 2006101020) is deposited with the School of Pharmacy, Second Military Medical University.

Extraction and Isolation. The dried whole plant of *I. mairei* var. *grandiflora* (32.5 kg) was finely pulverized and extracted with 80% EtOH under reflux for three times. The combined extracts were concentrated to a small volume *in vacuo*, then dissolved in 2% HCl, and filtered. The filtrate was adjusted to pH 9–10 by adding NH₄OH and then extracted with CHCl₃. The remaining aq. layer was neutralized with by 2% HCl to pH 7 and extracted with AcOEt. The AcOEt extract (350 g) was subjected to CC (silica gel; gradient CHCl₃/MeOH 100:0 \rightarrow 0:100) to afford *Fractions 1–9. Fr.* 9 was purified by repeated CC (silica gel and *Sephadex LH-20* (MeOH)) to provide compound **1** (7 mg).

Incargranine B (=2-(4-{rel-(3aR,11bR,11cS)-10-[2-(β -D-Glucopyranosyloxy)ethyl]-2,3,3a,4,5,6, 11b,11c-octahydro-1H-indolo[3,2,1-ij][1,7]naphthyridin-1-yl]phenyl)ethyl β -D-Glucopyranoside; **1**). Brown powder. [α]_D^{2D} = -12 (c = 0.275, MeOH). ¹H- and ¹³C-NMR: Table. ESI-MS (neg.): 701 ([M – H]⁻), 737 ([M + Cl]⁻). HR-ESI-MS (neg.): 701.3282 ([M – H]⁻, C₃₆H₄₉N₂O₁₂; calc. 701.3286).

The work was supported by *NCET Foundation*, *NSFC* (30725045), the *Special Program for New Drug Innovation of the Ministry of Science and Technology*, China (2009ZX09311-001, 2008ZX09308-005), *Shanghai Leading Academic Discipline Project* (B906), and in part by the *Scientific Foundation of Shanghai*, *China* (09DZ1975700, 09DZ1971500).

REFERENCES

- [1] W. C. Wang, 'Flora of China', Science Press, Beijing, 1990, Vol. 69, p. 46.
- [2] K. Xu, Y. L. Liu, H. Hu, J. Yunnan Agric. Univ. 2005, 20, 559.
- [3] M. Nakamura, Y.-M. Chi, J. Kinjo, W.-M. Yan, T. Nohara, Phytochemistry 1999, 51, 595.
- [4] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1997, 46, 763.
- [5] Y.-M. Chi, M. Nakamura, X. Y. Zhao, Nat. Prod. Res. Dev. (in Chinese) 2005, 17, 362.
- [6] T. F. Ji, X. Z. Fen, Chin. Tradit. Herb. Drugs 2002, 33, 967.
- [7] M. Nakamura, K. Kido, J. Kinjo, T. Nohara, *Phytochemistry* 2000, 53, 253.
- [8] Y.-M. Chi, W.-M. Yan, J. S. Li, Phytochemistry 1990, 29, 2376.
- [9] Y.-M. Chi, W.-M. Yan, D. C. Chen, N. Hiroshi, I. Yoichi, S. Ushio, *Phytochemistry* 1992, 31, 2930.
- [10] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1995, 39, 1485.
- [11] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, Phytochemistry 1995, 40, 353.
- [12] Y.-M. Chi, F. Hashimoto, W.-M. Yan, T. Nohara, M. Yamashita, N. Marubayashi, *Chem. Pharm. Bull.* 1997, 45, 495.
- [13] M. Nakamura, Y.-M. Chi, W.-M. Yan, Y. Nakasugi, T. Yoshizawa, N. Irino, F. Hashimoto, J. Kinjo, T. Nohara, S. Sakurada, J. Nat. Prod. 1999, 62, 1293.
- [14] Y.-Q. Su, Y.-H. Shen, S. Lin, J. Tang, J.-M. Tian, X.-H. Liu, W.-D. Zhang, Helv. Chim. Acta 2009, 92, 165.

Received March 6, 2010